Standard random walks and trapping on the Koch network with scale-free behavior and small-world effect.
نویسندگان
چکیده
A vast variety of real-life networks display the ubiquitous presence of scale-free phenomenon and small-world effect, both of which play a significant role in the dynamical processes running on networks. Although various dynamical processes have been investigated in scale-free small-world networks, analytical research about random walks on such networks is much less. In this paper, we will study analytically the scaling of the mean first-passage time (MFPT) for random walks on scale-free small-world networks. To this end, we first map the classical Koch fractal to a network, called Koch network. According to this proposed mapping, we present an iterative algorithm for generating the Koch network; based on which we derive closed-form expressions for the relevant topological features, such as degree distribution, clustering coefficient, average path length, and degree correlations. The obtained solutions show that the Koch network exhibits scale-free behavior and small-world effect. Then, we investigate the standard random walks and trapping issue on the Koch network. Through the recurrence relations derived from the structure of the Koch network, we obtain the exact scaling for the MFPT. We show that in the infinite network order limit, the MFPT grows linearly with the number of all nodes in the network. The obtained analytical results are corroborated by direct extensive numerical calculations. In addition, we also determine the scaling efficiency exponents characterizing random walks on the Koch network.
منابع مشابه
Impact of degree heterogeneity on the behavior of trapping in Koch networks
Previous work shows that the mean first-passage time (MFPT) for random walks to a given hub node (node with maximum degree) in uncorrelated random scale-free networks is closely related to the exponent γ of power-law degree distribution P(k) ∼ k(-γ), which describes the extent of heterogeneity of scale-free network structure. However, extensive empirical research indicates that real networked s...
متن کاملDistinct scalings for mean first-passage time of random walks on scale-free networks with the same degree sequence.
In general, the power-law degree distribution has profound influence on various dynamical processes defined on scale-free networks. In this paper, we will show that power-law degree distribution alone does not suffice to characterize the behavior of trapping problems on scale-free networks, which is an integral major theme of interest for random walks in the presence of an immobile perfect abso...
متن کاملRandom walks on the Apollonian network with a single trap
Explicit determination of the mean first-passage time (MFPT) for trapping problem on complex media is a theoretical challenge. In this paper, we study random walks on the Apollonian network with a trap fixed at a given hub node (i.e. node with the highest degree), which are simultaneously scale-free and small-world. We obtain the precise analytic expression for the MFPT that is confirmed by dir...
متن کاملهمگامسازی در مدل کوراموتو روی شبکههای پیچیده با توزیع فرکانس ذاتی دوقلهای
In this work, we study the Kuramoto model on scale-free, random and small-world networks with bimodal intrinsic frequency distributions. We consider two models: in one of them, the coupling constant of the ith oscillator is independent of the number of oscillators with which the oscillator interacts, and in the other one the coupling constant is renormalized with the number of oscillators with ...
متن کاملControlling the efficiency of trapping in a scale-free small-world network
Designing appropriate techniques to effectively control the trapping process in complex systems towards desirable efficiency is of paramount importance in the study of trapping problem. In this paper, we present three different methods guiding trapping process in a scale-free small-world network with a deep trap positioned at an initial node. All the proposed approaches dominate the trapping pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 79 6 Pt 1 شماره
صفحات -
تاریخ انتشار 2009